
BBC Micro to Windows Computer

Introduction
I have an old BBC micro computer stored in my Attic. I get it out on the odd occasion and power it
up. I have fond memories of the BBC micro and thought that it would be a great shame if it was
left in my attic gathering dust. I am going to removed the circuit boards from the case, leaving just
the case and the keyboard. I will then install a micro ITX motherboard in the case. I need to
convert the BBC keyboard to enable it to connect to the ITX motherboard as well. I will get a
motherboard with USB, PS2, parallel and serial interfaces, which will enable me to use the
computer for interfacing with future and past projects.

Case removal & cleaning

The case had yellowed slightly and there were a few scratches. I started off by removing the case
and putting the base to one side.

I cleaned the case using some car polish, which was very effective at removing the top layer of dirt
from the plastic. It also lightened the case slightly, probably nearer to it's original colour. The
polish is slightly abrasive, but didn't have any effect on the original texture of the plastic.

Cleaning in progress. This was a
rather lengthy process, but eventually
I was pleased with the result. Here
is a picture of the case after cleaning.

The fully cleaned case.

BBC Micro Keyboard Circuit Diagram

Circuit Description
The keyboard matrix consists of ten columns by eight rows of normally open switches mounted on
a metal plate. Connections to the gold contacts of these switches are made on a printed circuit
board.

Initially the four-bit synchronous binary counter (IC1) increments at a rate of 1MHz as set by the
system clock, in what's know as free-running mode. The BBC micro has no control over the
keyboard at this point.

In free running mode the counter is clocked at 1MHz and it's output is applied to a BCD to decimal
converter (IC3). In this way each one of the 10 columns of the keyboard is pulse low then high in
turn, producing a “walking zeros” pattern. Once all the columns have been scanned, the counter
will return to zero and then continue to increment, scanning the columns again.

Any key presses short a column line to a row line and this event is detected by IC4 an 8 input
NAND gate, pulsing high as the walking zero passes the column to which that key is connected.
This causes an interrupt to be sent to the computer.

The BBC micro recognises this interrupt and the computer executes the keyboard reading routine to
discover which key was depressed.
First KB EN is set low. This will set a low level at the 'load' input to the binary counter, disabling
the counter and causing it's outputs to agree with the inputs after the next clock pulse. This stops the
keyboard operating in 'free running' mode. It also enables the multiplexer by setting it's 'strobe'
input low.

The computer can now scan each column in turn to determine the column in which the key was
pressed.

This is achieved by setting the inputs to the counter to zero. At the next clock pulse the inputs will
appear on the outputs. The four outputs of the counter will now be latched onto the four inputs of
the BCD to Decimal converter. By setting the inputs to the counter and incrementing them, each
column can be interrogated in turn.

 At the same time the computer loads a 3 bit code into the inputs of the multiplexer (IC2) . This
code will increment until all 8 rows have been interrogated. The logic level on a particular row
appears at the output of the multiplexer when selected.

In this way, the keyboard matrix is scanned for the intersection between row and column when a
key has been depressed.

This scanning method enables any number of key presses to be detected simultaneously. Also the
computer doesn't have to monitor the keyboard for key presses as the keyboard reading routine will
only be active when a key press is detected and an interrupt is sent.

Column Scanning
74LS163 binary counter
The binary counter in conjunction with the 7445 BCD to decimal converter enables each column of
the matrix to be scanned in turn.

The counter simply takes 4 inputs (A,B,C,D) and will set the corresponding output
(QA,QB,QC,QD) after the next clock pulse. The clock rate received from the BBC micro is 1MHz,
however I can run this at a slower rate if required.

7445 BCD to Decimal Converter
The four outputs from the binary counter are applied to the inputs of this device. By incrementing
the BCD inputs to the 7445 from 0000 to 1001, each column in turn will be pulsed from a high state
to a low state, back to a high state, producing the ‘walking zeros pattern’.

BCD Inputs Decimal Outputs

A B C D 0 1 2 3 4 5 6 7 8 9 Matrix
Column
Selected

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 1 1 1 1 1 1 1

0 0 1 0 1 1 0 1 1 1 1 1 1 1 2

0 0 1 1 1 1 1 0 1 1 1 1 1 1 3

0 1 0 0 1 1 1 1 0 1 1 1 1 1 4

0 1 0 1 1 1 1 1 1 0 1 1 1 1 5

0 1 1 0 1 1 1 1 1 1 0 1 1 1 6

0 1 1 1 1 1 1 1 1 1 1 0 1 1 7

1 0 0 0 1 1 1 1 1 1 1 1 0 1 8

1 0 0 1 1 1 1 1 1 1 1 1 1 0 9

The counter needs to be clocked for each time the input changes. At this point I am not actually
testing for any keys pressed. I do however know by the Inputs A,B,C,D what column is currently
being tested for a key press.

Row Scanning
74LS251 8 Input multiplexer

The multiplexer takes 3 inputs A,B,C.

Input Output
(Matrix Row

Selected)
C B A W
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Each row is selected in turn by the three bit code present on the input to the multiplexer. The state
of the selected row (low or high) is transferred to the output of the multiplexer W.

In summary, if we know which column has been selected from the input to the BCD to Decimal
Converter and we know which row is currently being scanned by setting the input to the
multiplexer, it will be possible to detect a key press at that position. By scanning each column and
row it will be possible to detect multiple key presses.

BBC Micro Keyboard Connector.

Pin No Name Description
1 0V 0V DC Supply line
2 RST Keyboard reset (break key)
3 1MHz System clock. Goes to clock input of binary counter
4 KB EN Keyboard enable. High = binary counter free running, Low = binary counter follows inputs, multiplexer enabled.
5 PA4 A
6 PA5 B Multiplexer Data inputs (Keyboard matrix row Select)
7 PA6 C
8 PA0 A
9 PA1 B Binary counter data inputs (Keyboard matrix Column select)
10 PA2 C
11 PA3 D
12 PA7 W Output of Multiplexer – Detects key pressed at intersection of current row/column
13 LED3 CASSETTE MOTOR
14 CA2 Pulses high when a key is pressed.
15 +5V +5V DC supply
16 LED1 SHIFT LOCK
17 LED2 CAPS LOCK

Testing the Keyboard
First I will apply 5V to the keyboard and make sure nothing goes bang. The connector atached to
the end of the ribbon cable is a 0.1” pitch female connector. I mounted this connector onto my
breadboard and applied 5v across pins 15 and 1 as per the circuit diagram. I monitored the current

by using
a power
supply
with a
voltage
and
current
display.
The

measured current was 63mA.

If either pins 13,16 or 17 are connected to 0v, it can be seen from the circuit diagram that the
corresponding LED will light up. This was verified, see picture. The current increased to 70mA.

The current limiting resistor for each LED is 470 Ohms. I=5v / 470 Ohms = 10.6mA.

So, if all three LED’s are illuminated the current will increase by approx 30mA.

As I can't connect the keyboard directly to the ITX motherboard, I will need an interface.

Arduino
 “Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use
hardware and software. It's intended for artists, designers, hobbyists, and anyone interested in
creating interactive objects or environments”

I will be connecting the BBC's
keyboard circuit to the Arduino
board which will simulate the I/O
lines from the BBC micro to the
keyboard circuit.

I will not be running the keyboard
in 'free-running' mode, but will use
the micro controller to scan the
keyboard continually. I will then
be sending any keys detected to
the ITX motherboard using the
PS2 interface.

I chose the Arduino UNO for a
number of reasons:

Easy to program – Free
software

Plenty of I/O lines

Cost

Lots of support

The Arduino is programmed using the Arduino programming language which is very similar to
C++, except that it has various commands that can be used to utilise the various I/O functions
on the board. Short programs can be written on a PC and sent over the USB interface to the
devices flash memory.

Summary
Micro-controller ATmega328

Operating Voltage 5V.

Digital I/O Pins 14. Analogue Input Pins 6

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by boot loader

Clock Speed 16 MHz

Interfacing the Arduino with the PS2 port on the ITX
Motherboard

As well as controlling the keyboard, the Arduino will communicate with the PS2 port on the ITX
motherboard.
This only requires 3 connections.

The motherboard I am using doesn't have a
PS2 socket on the back panel, so I will be
connecting straight to the PS2 header on the
motherboard.

PS/2 Keyboard Port
Header

Pin Signal Name
1 Data
2 Key (no pin)
3 Ground
4 +5V

5 Clock
6 Key (no pin)

Communication between the Arduino and the motherboard
The first step is to get the Arduino communicating with the PS2 port and make the motherboard
think it has a keyboard attached. See Appendix 1 for more details on PS2 keyboard
communication protocols.

With the Arduino connected to the PS2 header as shown above, I now needed some software to
enable the correct communication protocols to be used. After a lot of searching I found the
following library:

PS2 Device Library
 Rather than try to re-invent the wheel I found the following links on the Arduino forums:

PS2 keyboard emulator
http://arduino.cc/forum/

I made some slight modifications to the code to get my Arduino communicating with the
motherboard. Click here to download the files – HOST ON PLUSNET
unpack ps2dev.h & ps2dev.cpp into the Arduino Libraries folder.. The sketch file should be placed
wherever you want to keep it.

Arduino

ITX Motherboard – PS2 Header

clock Data

GND

Pin 2Pin 3
GND

http://arduino.cc/forum/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247772275/15

Connecting the BBC Keyboard to the Arduino

BBC Keyboard Arduino
Pin
No

Name Pin
No

Name Description

1 0V NC
2 RST 8 Digital Input This is the BREAK key, which is wired separately to the keyboard matrix
3 1MHz 13 Digital Output Clock – Won't need to run at 1MHz, will need to experiment
4 KB EN NC Keep Low to enable Arduino control of keyboard
5 PA4 4 Digital Output Input A to Multiplexer
6 PA5 5 Digital Output Input B to Multiplexer
7 PA6 6 Digital Output Input C to Multiplexer
8 PA0 8 Digital Output Input A to Binary counter
9 PA1 10 Digital Output Input B to Binary counter
10 PA2 11 Digital Output Input C to Binary counter
11 PA3 12 Digital Output Input D to Binary counter
12 PA7 7 Digital Input W Output of Multiplexer – Detects key pressed at intersection of current row/column
13 LED3 NC Connect to Power LED on motherboard
14 CA2 NC This is used to detect a key press when the keyboard is 'free running', therefore is not required.
15 +5V NC
16 LED1 NC Connect to HDD LED on motherboard
17 LED2 0 Digital Output CAPS LOCK LED

Revised Circuit diagram

5
6
7

8
9

10
11

12

2

17

3

A
B
C
W

CAPS
LOCK LED

BREAK
KEY

A
B
C
D

CLK

4
5
6
7

8

9
10
11
12

13

0

0v
4

KB EN

Arduino
Pin no’s

BBC
connector

Appendix 1. PS/2 Keyboard protocol
The PS/2 keyboard communicates using a bi-directional serial line. When the line is idle, the
keyboard can send data consisting of 11 bits of data, 8 bits of this representing the code of the key
pressed or a keyboard-to-host command. Additionally, there is a set of commands that can be
exchanged between the host and the keyboard. The host has priority over the communication line
(i.e., command may be sent at any time and there will be no key codes transmitted from the
keyboard until the command has been sent).

Although the keyboard will operate properly without any configuration, the user may wish to
change certain parameters (e.g., instruct the keyboard to turn on/off the status LEDs or change the
key repeat rate). This can be performed by sending the appropriate command to the keyboard, as
described in the section called “Host-to-Keyboard communication”.

Keyboard-to-Host communication
The keyboard will send a code whenever a key is pressed, held down, or released. A "Make" code
is sent when the key is pressed down, and repeated periodically if the key is held down. The "break"
code is sent when the key is released. e.g. If key ‘A’ is pressed and then released the following key
codes will be sent from the keyboard to the host :

1C key code for ‘A’ (to indicate that ‘A’ has been pressed)
F0 break code
1C key code for ‘A’ (to indicate that ‘A’ has been released

In addition to the key codes, the keyboard might also send commands to the host. The most
common commands are listed below:

Keyboard-to-host commands

Code (hexadecimal) Command

FA Acknowledge

AA Self Test Passed

EE Echo response

FE Resend request

00 Error

FF Error

Keyboard serial data format

Bit Function

11 Stop bit (always 1)

10 Parity bit (odd parity)

9 Data bit 7 (MSB)

8 Data bit 6

7 Data bit 5

6 Data bit 4

5 Data bit 3

4 Data bit 2

3 Data bit 1

2 Data bit 0 (LSB)

1 Start bit (always 0)

At power on the keyboard will perform a diagnostic
self-test, referred to as BAT (basic assurance test).
When the test is complete a BAT completion code oF
either AA (success) or FC (Error) is sent. The code
must be sent 500-700mS after power-on or the
keyboard may not be detected by the host.

Host-to-Keyboard communication
The host can send commands to the keyboard to control its behaviour. The most common
commands are described below.

Host commands have priority over keyboard commands and will inhibit the transmission of any key
codes from the keyboard. Instead, the keyboard will transmit an acknowledge code upon receiving
the command.

Host-to-keyboard commands

Code (hexadecimal) Command

ED

Set status LEDs - This command can be used to turn on and off the Num Lock, Caps Lock and Scroll Lock LEDs. After
receiving this command, the keyboard will reply with an ACK (FA) and wait for another byte which determines the status of
the LEDs. Bit 0 controls the Scroll Lock, bit 1 controls the Num Lock and Bit 2 controls the Caps lock. Bits 3 to 7 are
ignored.

EE Echo - The keyboard should reply with an Echo (EE) upon receiving this command.

F0
Set scan code set - Upon receiving F0, the keyboard will reply with an ACK (FA) and wait for another byte. This byte can
be in the range 01 to 03, and it determines the scan code set to be used. Sending 00 as the second byte will return the scan
code set currently in use. Default is normally set 2.

F3 Set repeat rate - The keyboard will acknowledge the command with an ACK (FA) and wait for the second byte which
determines the repeat rate.

F4 Keyboard Enable - Clears the output buffer, enables the keyboard (i.e., key codes will be transmitted) and returns an ACK.

F5 Keyboard Disable - Resets the keyboard, disables the keyboard (key codes will not be transmitted) and returns an ACK.

FE Resend - Upon receipt of the resend command the keyboard will retransmit the last byte sent.

FF Reset - Resets the keyboard.

Graphic keys-to-keycodes map
Key names are on top, with the hexadecimal make code below.

Keycode tables
Standard PS/2 Keycodes, default set (set 2)

KEY MAKE BREAK KEY MAKE BREAK
A 1C F0,1C R ALT E0,11 E0,F0,11

B 32 F0,32 APPS E0,2F E0,F0,2F

C 21 F0,21 ENTER 5A F0,5A

D 23 F0,23 ESC 76 F0,76

E 24 F0,24 F1 05 F0,05

F 2B F0,2B F2 06 F0,06

G 34 F0,34 F3 04 F0,04

H 33 F0,33 F4 0C F0,0C

I 43 F0,43 F5 03 F0,03

J 3B F0,3B F6 0B F0,0B

K 42 F0,42 F7 83 F0,83

L 4B F0,4B F8 0A F0,0A

M 3A F0,3A F9 01 F0,01

N 31 F0,31 F10 09 F0,09

O 44 F0,44 F11 78 F0,78

P 4D F0,4D F12 07 F0,07

Q 15 F0,15 SCROLL 7E F0,7E

R 2D F0,2D [54 FO,54

S 1B F0,1B INSERT E0,70 E0,F0,70

T 2C F0,2C HOME E0,6C E0,F0,6C

U 3C F0,3C PG UP E0,7D E0,F0,7D

V 2A F0,2A DELETE E0,71 E0,F0,71

W 1D F0,1D END E0,69 E0,F0,69

X 22 F0,22 PG DN E0,7A E0,F0,7A

Y 35 F0,35 UP E0,75 E0,F0,75

Z 1A F0,1A LEFT E0,6B E0,F0,6B

0 45 F0,45 DOWN E0,72 E0,F0,72

1 16 F0,16 RIGHT E0,74 E0,F0,74

2 1E F0,1E NUM 77 F0,77

3 26 F0,26 KP / E0,4A E0,F0,4A

4 25 F0,25 KP * 7C F0,7C

5 2E F0,2E KP - 7B F0,7B

6 36 F0,36 KP + 79 F0,79

7 3D F0,3D KP EN E0,5A E0,F0,5A

8 3E F0,3E KP . 71 F0,71

9 46 F0,46 KP 0 70 F0,70

` 0E F0,0E KP 1 69 F0,69

- 4E F0,4E KP 2 72 F0,72

= 55 FO,55 KP 3 7A F0,7A

\ 5D F0,5D KP 4 6B F0,6B

BKSP 66 F0,66 KP 5 73 F0,73

SPACE 29 F0,29 KP 6 74 F0,74

TAB 0D F0,0D KP 7 6C F0,6C

CAPS 58 F0,58 KP 8 75 F0,75

L SHFT 12 FO,12 KP 9 7D F0,7D

L CTRL 14 FO,14] 5B F0,5B

L GUI E0,1F E0,F0,1F ; 4C F0,4C

L ALT 11 F0,11 ' 52 F0,52

R SHFT 59 F0,59 , 41 F0,41

R CTRL E0,14 E0,F0,14 . 49 F0,49

R GUI E0,27 E0,F0,27 / 4A F0,4A

	Introduction
	Case removal & cleaning
	BBC Micro Keyboard Circuit Diagram
	Circuit Description
	Column Scanning
	Row Scanning
	BBC Micro Keyboard Connector.

	Testing the Keyboard
	Arduino
	Interfacing the Arduino with the PS2 port on the ITX Motherboard
	Communication between the Arduino and the motherboard
	PS2 Device Library
	Connecting the BBC Keyboard to the Arduino

	Revised Circuit diagram
	Appendix 1. PS/2 Keyboard protocol

